Home » Technology » Two Melting Antarctic Glaciers Could Decide the Fate of Our Coastlines
Technology

Two Melting Antarctic Glaciers Could Decide the Fate of Our Coastlines

This story originally appeared on Grist and is part of the Climate Desk collaboration.

In a remote region of Antarctica known as Pine Island Bay, 2,500 miles from the tip of South America, two glaciers hold human civilization hostage.

Stretching across a frozen plain more than 150 miles long, these glaciers, named Pine Island and Thwaites, have marched steadily for millennia toward the Amundsen Sea, part of the vast Southern Ocean. Further inland, the glaciers widen into a two-mile-thick reserve of ice covering an area the size of Texas.

There’s no doubt this ice will melt as the world warms. The vital question is when.

The glaciers of Pine Island Bay are two of the largest and fastest-melting in Antarctica. (A Rolling Stone feature earlier this year dubbed Thwaites “The Doomsday Glacier.”) Together, they act as a plug holding back enough ice to pour 11 feet of sea-level rise into the world’s oceans—an amount that would submerge every coastal city on the planet. For that reason, finding out how fast these glaciers will collapse is one of the most important scientific questions in the world today.

To figure that out, scientists have been looking back to the end of the last ice age, about 11,000 years ago, when global temperatures stood at roughly their current levels. The bad news? There’s growing evidence that the Pine Island Bay glaciers collapsed rapidly back then, flooding the world’s coastlines—partially the result of something called “marine ice-cliff instability.”

The ocean floor gets deeper toward the center of this part of Antarctica, so each new iceberg that breaks away exposes taller and taller cliffs. Ice gets so heavy that these taller cliffs can’t support their own weight. Once they start to crumble, the destruction would be unstoppable.

“Ice is only so strong, so it will collapse if these cliffs reach a certain height,” explains Kristin Poinar, a glaciologist at NASA’s Goddard Space Flight Center. “We need to know how fast it’s going to happen.”

In the past few years, scientists have identified marine ice-cliff instability as a feedback loop that could kickstart the disintegration of the entire West Antarctic ice sheet this century—much more quickly than previously thought.

Minute-by-minute, huge skyscraper-sized shards of ice cliffs would crumble into the sea, as tall as the Statue of Liberty and as deep underwater as the height of the Empire State Building. The result: a global catastrophe the likes of which we’ve never seen.

Ice comes in many forms, with different consequences when it melts. Floating ice, like the kind that covers the Arctic Ocean in wintertime and comprises ice shelves, doesn’t raise sea levels. (Think of a melting ice cube, which won’t cause a drink to spill over.)

Land-based ice, on the other hand, is much more troublesome. When it falls into the ocean, it adds to the overall volume of liquid in the seas. Thus, sea-level rise.

Antarctica is a giant landmass—about half the size of Africa—and the ice that covers it averages more than a mile thick. Before human burning of fossil fuels triggered global warming, the continent’s ice was in relative balance: The snows in the interior of the continent roughly matched the icebergs that broke away from glaciers at its edges.

Now, as carbon dioxide traps more heat in the atmosphere and warms the planet, the scales have tipped.

A wholesale collapse of Pine Island and Thwaites would set off a catastrophe. Giant icebergs would stream away from Antarctica like a parade of frozen soldiers. All over the world, high tides would creep higher, slowly burying every shoreline on the planet, flooding coastal cities and creating hundreds of millions of climate refugees.

All this could play out in a mere 20 to 50 years—much too quickly for humanity to adapt.

“With marine ice cliff instability, sea-level rise for the next century is potentially much larger than we thought it might be five or 10 years ago,” Poinar says.

A lot of this newfound concern is driven by the research of two climatologists: Rob DeConto at the University of Massachusetts-Amherst and David Pollard at Penn State University. A study they published last year was the first to incorporate the latest understanding of marine ice-cliff instability into a continent-scale model of Antarctica.

Their results drove estimates for how high the seas could rise this century sharply higher. “Antarctic model raises prospect of unstoppable ice collapse,” read the headline in the scientific journal Nature, a publication not known for hyperbole.

Instead of a three-foot increase in ocean levels by the end of the century, six feet was more likely, according to DeConto and Pollard’s findings. But if carbon emissions continue to track on something resembling a worst-case scenario, the full 11 feet of ice locked in West Antarctica might be freed up, their study showed.

Three feet of sea-level rise would be bad, leading to more frequent flooding of US cities such as New Orleans, Houston, New York, and Miami. Pacific Island nations, like the Marshall Islands, would lose most of their territory. Unfortunately, it now seems like three feet is possible only under the rosiest of scenarios.

At six feet, though, around 12 million people in the United States would be displaced, and the world’s most vulnerable megacities, like Shanghai, Mumbai, and Ho Chi Minh City, could be wiped off the map.

At 11 feet, land currently inhabited by hundreds of millions of people worldwide would wind up underwater. South Florida would be largely uninhabitable; floods on the scale of Hurricane Sandy would strike twice a month in New York and New Jersey, as the tug of the moon alone would be enough to send tidewaters into homes and buildings.

DeConto and Pollard’s breakthrough came from trying to match observations of ancient sea levels at shorelines around the world with current ice sheet behavior.

Around 3 million years ago, when global…

Source link